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The uncertainty relation is one of the fundamental principles in quantum mechanics and plays an important role
in quantum information science. We experimentally test the error-disturbance uncertainty relation (EDR) with
continuous variables for Gaussian states. Two incompatible continuous-variable observables, amplitude and
phase quadratures of an optical mode, are measured simultaneously using a heterodyne measurement system.
The EDR values with continuous variables for coherent, squeezed, and thermal states are verified experimentally.
Our experimental results demonstrate that Heisenberg’s EDR with continuous variables is violated, while
Ozawa’s and Branciard’s EDRs with continuous variables are validated. © 2019 Chinese Laser Press

https://doi.org/10.1364/PRJ.7.000A56

1. INTRODUCTION

As one of the cornerstones of quantum mechanics, the uncer-
tainty relation describes the measurement limitation on two
incompatible observables. The uncertainty relation has a huge
impact on areas of quantum information technology such as
entanglement verification [1], quantum key distribution [2],
quantum dense coding [3–5], and security of quantum cryptog-
raphy [6]. Heisenberg’s original uncertainty relation is related
to measurement effect, which states that we cannot acquire
perfect knowledge of a state without disturbing it [7].

There are two kinds of uncertainty relations, the preparation
and the measurement uncertainty relations, depending on
whether one is talking about average measurement or one-shot
measurement in the understanding of Heisenberg’s spirit.
The preparation uncertainty relation studies the minimal
dispersion of two quantum observables before measurement
[8–10]. The Robertson uncertainty relation, which reads as
σ�x�σ�p� ≥ ℏ∕2, is a typical example in this sense, where
σ�x� and σ�p� are the standard deviations of position and
momentum [10]. For such uncertainty relations, the measure-
ments of x and p are performed on an ensemble of identically
prepared quantum systems. The measurement uncertainty re-
lation holds that Heisenberg’s uncertainty principle should be
based on the observer’s effect, which means that measurements
of certain systems cannot be made without affecting the system.
This kind of uncertainty relation, which studies the extent to
which the accuracy of a position measurement is related to the
disturbance of the particle’s momentum, is also called the
error-disturbance relation (EDR) [11–13].

Heisenberg’s EDR is generally expressed as

ε�A�η�B� ≥ CAB , (1)

where CAB � jh�A,B�ij∕2, �A,B� � AB − BA, ε�A� �
h�C − A�2i1∕2, and η�B� � h�D − B�2i1∕2 represent the root-
mean-square (RMS) difference between the initial values of
A and B and the outcome values of a measurement of C and
D, respectively. However, it has been shown that Heisenberg’s
EDR is not valid in some cases [11]. Heated debates on EDR
have since taken place, and new formulated EDRs have been
put forward [12–24]. Ozawa proposed the EDR as

ε�A�η�B� � ε�A�σ�B� � σ�A�η�B� ≥ CAB: (2)

Branciard then improved Ozawa’s EDR as [16]�
ε�A�2σ�B�2 � σ�A�2η�B�2

�2ε�A�η�B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ�A�2σ�B�2 − C2

AB

q �
1∕2

≥ CAB , (3)

which is tighter than Ozawa’s EDR. The experimental tests of
the uncertainty relations have been demonstrated in spin-1/2
[25–28], photonic [29–34], nuclear spin [35], and ion-trap
[36,37] systems. All of these experimental tests of EDR are
limited in discrete-variable systems.

In the original thought experiment proposed by Heisenberg,
two continuous variables, position and momentum of a
particle, are used to describe the measurement uncertainty
relation. Thus, the experimental test of EDR based on a
continuous-variable system reflects Heisenberg’s original
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idea more precisely, and will make the test of the uncertainty
relation more complete. Very recently, an experimental test of
the error-tradeoff uncertainty relation with continuous varia-
bles was demonstrated using an Einstein–Podolsky–Rosen
(EPR) entangled state [38].

In this paper, we report an experimental test of EDR with
continuous variables using a heterodyne measurement system.
An advantage of our experiment is that we can test the EDR
with continuous variables for different signal states by changing
the input state of the heterodyne measurement system. In our
experiment, we test the EDR for three different Gaussian states:
coherent, squeezed, and thermal states. A vacuum mode is used
as meter mode in the measurement system. Our experimental
results demonstrate that Heisenberg’s EDR with continuous
variables is violated, while Ozawa’s and Branciard’s EDRs with
continuous variables are validated.

2. PRINCIPLE AND EXPERIMENTAL SETUP

The amplitude and phase quadratures of an optical mode are
incompatible continuous-variable observables, and cannot be
measured simultaneously. A heterodyne measurement system,
which is a joint measurement apparatus, can be used to measure
the approximations of A and B with the compatible observables
C andD, as shown in Fig. 1(a). The signal mode ρ with incom-
patible observables A � x̂ρ and B � p̂ρ is coupled with a
meter mode via a beam-splitter (BS), where x̂ � â� â† and
p̂ � �â − â†�∕i denote the amplitude and phase quadratures

of an optical mode, respectively. In this case, the righthand sides
of EDRs in Eqs. (1)–(3) are given by CAB � 1.

The signal mode is prepared as coherent, squeezed, and
thermal states, and a vacuum state ν is used as the meter
mode in our experiment. The amplitude quadrature C � x̂c �ffiffiffiffi
T

p
x̂ρ −

ffiffiffi
R

p
x̂ν and phase quadratureD� p̂d �

ffiffiffi
R

p
p̂ρ�

ffiffiffiffi
T

p
p̂ν

of two output modes of BS c and d are measured by two
homodyne detectors simultaneously, which are used to approxi-
mate A and B, respectively, where T is the transmission effi-
ciency of the BS, and R � 1 − T [39]. The RMS error and
disturbance are expressed as

ε�A� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�C − A�2i

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffi

T
p

− 1
�
2
σ�x̂ρ�2 � Rσ�x̂ν�2

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiDh�

1 −
ffiffiffiffi
T

p �
x̂c −

ffiffiffi
R

p
x̂d
i
2
Er
, (4)

η�B� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�D − B�2i

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffi

R
p

− 1
�
2
σ�p̂ρ�2 � T σ�p̂ν�2

r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiDh�

1 −
ffiffiffi
R

p �
p̂c −

ffiffiffiffi
T

p
p̂d
i
2
E
,

r
(5)

respectively.
The experimental setup for test of EDR is illustrated in

Fig. 1(b). A laser generates both 1080 and 540 nm optical fields
simultaneously. The 1080 nm optical field is used as the injected
signal of a nondegenerate optical parametric amplifier (NOPA)
and the local oscillator fields of homodyne detectors. The
540 nm optical field serves as the pump field of the NOPA.
A half-waveplate (HWP) and a polarization beam-splitter
(PBS), which are placed after the NOPA, are used to obtain
different signal modes. The measurement apparatus is com-
posed by a BS and two homodyne detectors. The AC output
signals from HD1 and HD2 are mixed with a local reference
signal of 3 MHz, and then filtered by low-pass filters with a
bandwidth of 30 kHz and amplified 1000 times (low-noise pre-
amplifier, SRS, SR560). Then, the two signals from the outputs
of the preamplifiers are recorded by a digital storage oscilloscope
simultaneously. A sample size of 5 × 105 data points is used for
all quadrature measurements. The interference efficiencies
between signal and local oscillator fields of the HDs are 99%,
and the quantum efficiencies of the photodiodes are 99.6%.

3. RESULTS

A coherent state is prepared when the pump field of the
NOPA is blocked and only the injected field passes through
the NOPA. The variances of amplitude and phase quadra-
tures of the coherent and vacuum states (meter mode) are
σ�x̂ρ�2 � σ�p̂ρ�2 � 1 and σ�x̂ν�2 � σ�p̂ν�2 � 1, respectively
[39]. When the NOPA is operated at the parametric deampli-
fication situation and the half-waveplate after the NOPA is set
to 22.5°, x-squeezed and p-squeezed states are prepared. The
x-squeezed state is used as the signal mode in the test of

Fig. 1. (a) Principle of the test of EDR with continuous variables.
A joint measurement apparatus implements the approximations of
incompatible observables A and B with the compatible observables
C and D by coupling the signal and meter modes via a beam-splitter.
Coherent state (CS), squeezed state (SS), and thermal state (TS)
serve as signal modes, and a vacuum state serves as meter mode.
(b) Schematic of the experimental setup. Signal state is prepared by
a NOPA. The measurement apparatus is composed by a BS, which
is a combination of PBS–HWP–PBS, and two HDs. Two output
modes of the BS are detected by HD1 and HD2, respectively.
NOPA, nondegenerate optical parametric amplifier; BS, beam-splitter;
HWP, half-waveplate; PBS, polarization beam-splitter; HD, homo-
dyne detector; LO, local oscillator.
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EDR for the squeezed state. The variances of the amplitude and
phase quadratures of the x-squeezed state are σ�x̂ρ�2 �
e−2r and σ�p̂ρ�2 � e2r , respectively, where r is the squeezing
parameter [39,40]. In the experiment, the squeezed state with
−2.9 dB squeezing and 3.9 dB antisqueezing is generated by
the NOPA. When the half-waveplate after the NOPA is set
to 0°, the EPR entangled state is generated. Each mode of
the entangled state is a thermal state, and one of them is used
for the EDR test for the thermal state. The variances of the
amplitude and phase quadratures of the thermal state are
σ�x̂ρ�2 � σ�p̂ρ�2 � �e−2r � e2r�∕2 [39].

The amplitude quadrature x̂ and phase quadrature p̂ are
measured by locking the relative phase difference between
the signal mode and local oscillator to 0 and π∕2 in the homo-
dyne detector, respectively. When x̂c and x̂d (p̂c and p̂d ) are
recorded in the time domain simultaneously, the error ε�A�
and disturbance η�B� are obtained according to Eqs. (4) and
(5), respectively. The Heisenberg’s EDR is verified by the ob-
tained error ε�A� and disturbance η�B� according to Eq. (1).
Then we measure the signal mode ρ by HD1 directly by re-
moving the BS to obtain the variances of amplitude and phase
quadratures σ�x̂ρ�2 and σ�p̂ρ�2, respectively. After we have mea-
surement results for ε�A�, η�B�, σ�x̂ρ�, and σ�p̂ρ�, the lefthand
sides of the Ozawa and Branciard EDRs can be obtained
according to Eqs. (2) and (3), respectively.

The dependence of error of the amplitude quadrature ε�A�
and disturbance of the phase quadrature η�B� on the transmis-
sion efficiency of BS for three different Gaussian signal modes is
shown in Figs. 2(a)–2(c), respectively. The error ε�A� decreases
with the increasing of the transmission efficiency of the BS,
while the disturbance η�B� increases with the increasing of

the transmission efficiency for all of the three Gaussian states.
When the error reaches the minimum value, the maximum
disturbance is caused. The reduction of disturbance in one
observable can be realized at the expense of increasing error
in the other observable. When an x-squeezed state serves as
signal mode, the maximum error is less than the case in which
the coherent state serves as signal field with the cost of the
greater maximum disturbance for the anti-squeezing of the
phase quadrature [Fig. 2(b)]. When the signal mode is a
thermal state, both the error and disturbance of the state are
larger than that of the coherent state at the same transmission
efficiency of BS, as shown in Figs. 2(a) and 2(c).

The dependence of the lefthand side of Ozawa’s (red curve),
Branciard’s (blue curve), and Heisenberg’s (green curve) EDRs
on the transmission efficiency of BS for three Gaussian states is
shown in Figs. 2(d)–2(f ), respectively. It is clear that the
Ozawa’s and Branciard’s EDRs with continuous variables are
valid, while Heisenberg’s EDR with continuous variable is vio-
lated. Comparing the blue and red curves, we can see that the
Branciard’s EDR is tighter than Ozawa’s EDR with continuous
variables. When the transmission efficiency is 50%, the left-
hand side of Branciard’s EDR with continuous variables reaches
its minimum value in the case of coherent and thermal states.
In the case of the x-squeezed state serving as signal mode, the
Branciard’s inequality is minimized when the transmission ef-
ficiency is about 95%, which is because the variances of am-
plitude and phase quadratures of the squeezed state are
unequal.

The comparison of the lower bounds of EDRs for three
Gaussian states in the error-disturbance plot is shown in
Fig. 3. The results for coherent, squeezed, and thermal states

Fig. 2. Experimental results. (a), (b) and (c) Dependence of error (black curve) and disturbance (red curve) on the transmission efficiency of BS
(T) for coherent, squeezed, and thermal states, respectively. (d), (e) and (f ) Lefthand sides of the EDRs with continuous variables for coherent,
squeezed, and thermal states, respectively. Green curve, Heisenberg’s EDR; red curve, Ozawa’s EDR; blue curve, Branciard’s EDR. Black line,
righthand side of the EDR. All experimental data agree well with the theoretical predictions. The error bars are obtained by RMS of measurements
repeated ten times.
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are shown in Figs. 3(a)–3(c), respectively. All the experimental
results demonstrate that Heisenberg’s EDR with continuous
variables is violated, yet Ozawa’s and Branciard’s EDRs with
continuous variables are valid.

4. DISCUSSION AND CONCLUSION

Comparing the experimental tests of EDR with discrete and
continuous variables, the main difference is that the quantum
states (quantum observables) used in the experiments are differ-
ent. In the presented paper, amplitude and phase quadratures of
Gaussian states are applied. The main results of the experimen-
tal tests of EDR with discrete and continuous variables are the
same, which confirms that the Heisenberg’s EDR can be vio-
lated in some cases, while the improved Ozawa and Branciard
EDRs are valid [25–33]. There are also some experimental tests
of EDR proposed by Busch, Lahti, and Werner with discrete
variables [35–37], but the experimental test of this EDR with
continuous variables has not been reported.

Comparing this experiment with the test of error-tradeoff
uncertainty relation reported in Ref. [38], there are two
differences. First, the quantum states used to demonstrate
the error-disturbance relation with continuous variables are
different. In Ref. [38], an EPR entangled state is used in
the experiment, while in this paper, three different Gaussian
states are used in the experiment: coherent, squeezed, and ther-
mal states. The results for non-zero error and disturbance of
these three Gaussian states are presented. Second, the measure-
ment schemes used in these two experiments are different. In
Ref. [38], the amplitude and phase quadratures of two EPR
beams are measured by two homodyne detectors simultane-
ously. One of the EPR beams plays the role of the meter field.
In this paper, the heterodyne measurement system is used to
measure the amplitude and phase quadratures of an optical
mode simultaneously. The vacuum is used as the meter field.
This scheme is a general test of EDR with continuous variables
for an optical mode.

In summary, we experimentally test the Heisenberg, Ozawa,
and Branciard EDRs with continuous variables using a hetero-
dyne measurement system. Three different Gaussian states, i.e.,
coherent, squeezed, and thermal states, are used as signal mode

to test the EDRs. All the experimental results demonstrate that
Heisenberg’s EDR is violated, yet Ozawa’s and Branciard’s
EDRs are validated. Our work represents an important advance
in understanding the fundamentals of physical measurement,
and sheds light on the development of quantum information
technology.
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